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We present the results from numerical and theoretical investigations of rotating
Rayleigh–Bénard convection for relatively large dimensionless rotation rates,
170 <Ω < 274, and a Prandtl number of 6.4. Unexpected square patterns were found
experimentally by Bajaj et al. (Phys. Rev. Lett., vol. 81, 1998, p. 806) in this parameter
regime and near threshold for instability in the bulk. These square patterns have not
yet been understood theoretically. Sánchez-Álvarez et al. (Phys. Rev. E, vol. 72, 2005,
p. 036307) have found square patterns in numerical simulations for similar parameters
when only the Coriolis force is included. We performed detailed numerical studies
of rotating Rayleigh–Bénard convection for the same parameters as the experiments
and simulations. To better understand these patterns, we compared the effects of the
Coriolis force as well as the centrifugal force. We also computed the coefficients of the
amplitude equation describing one-, two- and three-mode bulk solutions to rotating
Rayleigh–Bénard convection. We find that squares are unstable, but we do find stable
limit cycles consisting of three coupled oscillating amplitudes, which can superficially
resemble squares, since one of the three amplitudes is rather small.
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1. Introduction
One of the most productive systems for studying pattern formation is Rayleigh–

Bénard convection, which, in addition to exhibiting stable roll states, also has
spatiotemporally chaotic states. In Rayleigh–Bénard convection, a fluid cell bounded
by parallel plates is kept at a constant temperature difference �T . This leads to
a buoyancy-driven instability as �T increases past a critical value. In rotating
convection, the entire cell is rotated rigidly about a vertical axis with a constant
rotation rate ΩD . Hence, the system no longer has reflection symmetry, but maintains
rotational symmetry (Knobloch 1998). For large enough rotation rates, a chaotic state
known as domain chaos (due to the Küppers–Lortz instability) has been found to
exist (Küppers & Lortz 1969; Tu & Cross 1992). This state consists of domains of
parallel rolls, each of whose particular location and size vary chaotically.

Unexpected square patterns were found experimentally by Bajaj et al. (1998) and
Ahlers & Bajaj (1999), in this same parameter regime. These square patterns have not
yet been understood theoretically. Sánchez-Álvarez et al. (2005) have found square
patterns in numerical simulations for similar parameters when only the Coriolis force
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is included, clearly indicating that the centrifugal force is not responsible for the
patterns. A wall localized mode also exists in these finite cells, and previous studies
are in disagreement as to whether this wall mode is responsible for the square patterns.
For example, Marques & Lopez (2008) found a correlation between the mode number
and the presence of square patterns in their simulations, suggesting that the wall mode
strongly influences the bulk pattern. But, more recently, Rubio, Lopez & Marques
(2010) found interior localized square patterns near onset for much lower rotation
rates (Ω = 19.7), but in a regime where the wall mode instability had not yet set in,
suggesting that the wall mode may be unimportant.

Rotating Rayleigh–Bénard convection has been studied extensively for lower
rotation rates both experimentally (Hu, Ecke & Ahlers 1995, 1997) and numerically
for small aspect ratio periodic cells (Demircan, Scheel & Seehafer 2000; Demircan &
Seehafer 2001) as well as larger aspect ratio (Scheel & Cross 2005; Rubio et al.
2010). Other than Sánchez-Álvarez et al. (2005) and Marques & Lopez (2008),
rotating Rayleigh–Bénard convection has not been studied for higher rotation rates
(170 < Ω < 274), intermediate Prandtl number (σ =6.4) and experimentally realistic
finite boundary conditions. Rotating Rayleigh–Bénard convection has been studied
at these rotation rates for annular channels, both with curvature (Scheel et al. 2003)
and with infinite curvature (Chang, Liao & Zhang 2006; Zhan et al. 2009). In these
cases, the counter-propagating travelling wall modes are the first to set in, and then
a domain chaos state develops in the bulk as a secondary instability. For even higher
Rayleigh numbers, the bulk becomes disorganized. For the annular channels studied,
square patterns were always found to be unstable, although they did sometimes
appear as transient states.

Finally, theoretical predictions have been made for roll, square and hexagonal
planforms (Goldstein, Knobloch & Silber 1990, 1992). It has been known for a
long time that squares are always unstable (Cross & Greenside 2009) in rotating
Rayleigh–Bénard convection. In addition, theoretical work (Zhang & Liao 2008) has
been done on computing asymptotic solutions (for Ω = 1000) for arbitrary Prandtl
number and aspect ratio, but assuming the existence of only a single azimuthal
mode. The threshold for convection is defined as when convection sets in, either
in the bulk or as a wall mode, and their solutions agree well with simulations.
However, theoretical work by Rubio et al. (2010) for lower rotation rates (Ω = 20)
indicates that several distinct azimuthal modes set in with similar growth rates
near onset, making this type of asymptotic approach problematic for lower rotation
rates.

In this paper, we study the rotation rate regime (170 < Ω < 274) where the origin
of the square patterns remains a mystery. The effects of the centrifugal as well as the
Coriolis force are included. We find that there is better side-by-side agreement with
experiments when we include the centrifugal force, although the qualitative results
agree even when the centrifugal force is neglected, at least for low enough rotation
rates and near threshold. We also study the influence of the wall mode on the bulk,
and find the persistence of ‘square-like’ patterns even when there is no wall mode,
as in a periodic geometry. Finally, we compute the coefficients of the one, two and
three coupled amplitude equations for Rayleigh–Bénard convection in the bulk with
no-slip boundary conditions and the inclusion of the Coriolis force. We find that
squares are always unstable, but there are Hopf bifurcations to oscillatory three-mode
amplitude equation solutions which can superficially resemble squares. Upon a closer
investigation, we find good agreement between our simulations and these amplitude
equation solutions near threshold.
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2. Boussinesq equations
The system is modelled by the Boussinesq equations augmented by the Coriolis force

and the centrifugal force (Becker et al. 2006). The variables are non-dimensionalized
by specifying the length in terms of the cell height d , the temperature in terms of �T

and the time in units of the vertical thermal diffusion time τv = d2/κ , where κ is the
thermal diffusivity. The equations are

σ −1(∂t + u · ∇)u = −∇P + ∇2u + θẑ + 2Ωu × ẑ − βσΩ2

Rc

θ r, (2.1)

(∂t + u · ∇)θ = ∇2θ + Rw, (2.2)

∇ · u = 0. (2.3)

The variable u(r, t) ≡ (u, v, w) is the velocity field, P (r, t) is the pressure, and
θ(r, t) is the temperature deviation from the linear conduction profile. The symbol
∂t indicates time differentiation, and ẑ is a unit vector in the vertical direction. The
Prandtl number σ = ν/κ , where ν is the kinematic viscosity. The Rayleigh number
R =αg�T d3/κν, where α is the thermal expansion coefficient and g is the acceleration
of gravity. The variable Ω is the dimensionless rotation rate (Ω = ΩDd2/ν). The aspect
ratio Γ is defined for square cells as the ratio of the length of the cell to its depth d and
for cylindrical cells as the ratio of the radius to the depth. The variable β =α�Tc, and
�Tc (and corresponding critical Rayleigh number Rc) is the temperature difference at
which conduction gives way to convection.

Our boundary conditions along the top and bottom plates are no-slip and
conducting:

u = v = w = θ = 0 at z =0, 1. (2.4)

For realistic boundary conditions on the sidewalls, we use no-slip velocity boundary
conditions and conducting or insulating thermal boundaries:

Conducting boundaries

u = 0, θ =0 at r =Γ,
(2.5)

Insulating boundaries

u = 0,
∂θ

∂r
=0 at r =Γ.

(2.6)

We also used periodic (for square regions only, of course) boundary conditions on
the sidewalls:

Periodic boundaries
u(x + Γ, y) = u(x, y), θ(x + Γ, y) = θ(x, y), and

u(x, y + Γ ) = u(x, y), θ(x, y + Γ ) = θ(x, y).
(2.7)

For all our runs and calculations, we used a Prandtl number of 6.4, cylindrical
aspect ratio Γ = 5 and square aspect ratio Γ = 10. We used a rotation rate Ω =274
to compare to the numerical results, Ω =170 to compare with the experiments, and
also an intermediate Ω = 200.

When including the centrifugal force, one needs to put in the parameters of a
specific system, and we used parameters from the experiments (Bajaj et al. 1998). The
two parameters necessary are (i) the depth of the cells (7.9 mm) and (ii) a value of
the thermal diffusivity κ (1.5 × 10−7 m2 s−1). This yields a vertical diffusion time of
420 s.
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With these numbers, we obtain Froude numbers F = Ω2σ 2dΓ/gτ 2
v = 0.03 and 0.07

for the rotation rates of 170 and 274, respectively. This is at the lower limit of
moderate Froude numbers according to Marques et al. (2007). Even in this regime,
Marques et al. have found quantitative and qualitative changes in the flow dynamics.
Likewise, Rubio et al. (2010) found qualitative differences for Froude numbers as low
as 0.01. We find similar results, which are discussed below.

To solve the Boussinesq equations with rotation, we used the code Nek5000 (Fischer
1997) a parallel, spectral element code developed to solve the Navier–Stokes equation.
This code is now readily available (https://nek5000.mcs.anl.gov/) and more than two
dozen research institutions are using it. We used a time resolution of 0.0002τv . The
spatial resolution corresponded to 11 (Gauss–Lobatto–Legendre) interpolation points
per element dimension (so 11×11×11 points per element), and an element side is equal
to the depth of the cell. This translates to about 0.1 the depth of the cell, but there
are more interpolation points near the boundaries than in the centre of each element,
so the resolution changes from 0.02 (near the sides) to 0.15 (near the centre). The
numerical code has been thoroughly checked (Chiam et al. 2003; Paul, Cross & Fischer
2002; Scheel et al. 2003; Scheel & Cross 2005; Becker et al. 2006; Scheel 2006, 2007)
for these systems. We performed multiple runs for the systems described here, but
with finer resolution (11→13→15 interpolation points) and found very similar results,
with oscillation frequencies varying by at most 10 % as the resolution changed.

We varied our initial conditions between random values, parallel rolls and squares.
As discussed below, the evolution of the dynamics strongly depended on the initial
conditions.

3. Results
3.1. Modulated trimodal patterns

Table 1 summarizes our results, in which we varied the rotation rate, ε = (R − Rc)/Rc,
inclusion of centrifugal force, boundary conditions and initial conditions to cover a
wide range of parameters.

The most clean example of a modulated trimodal pattern can be observed for the
following case: Γ = 5, σ = 6.4, ε = 0.03, Ω = 200 and insulating boundary conditions
as shown in the angle–time plot in figure 1(a). A snapshot of the pattern is shown in
figure 2. The main modes rotate slightly in the prograde direction, as indicated by the
tilt in figure 1(a). This is due to the finite size of the cell, and this angular velocity was
measured by Sánchez-Álvarez et al. (2005) and is found to decrease as Γ increases.
We also see this (compare figure 1a with figure 11). From figure 1(a) we measured
a drift of about 700 vertical diffusion times for one full cycle, corresponding to an
angular frequency of 2π/700 = 0.009 rad τ−1

ν .
The amplitudes of the two modes which make up the ‘squares’ oscillate, and a

third, weaker mode is also present, as can be more clearly seen in figure 1(b), which
only shows the region from 650 to 800 vertical diffusion times. Note that this type of
oscillation was also seen by Sánchez-Álvarez et al. (2005), although they only looked
at the two orthogonal modes. This leads us to conclude that the ‘square’ pattern
here is actually a modulated three-mode limit cycle to be discussed in § 3.4. We will
call it a modulated trimodal pattern (MT) to distinguish it from the Küppers–Lortz
(KL) pattern that can also be present. See the discussion just below (3.12) for an
explanation of the KL instability.

To obtain this state, we started with an initial condition of squares (it is very difficult
to find this state when starting from random conditions), and one sees that even
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Centrifugal Bulk Boundary Initial
Ω ε force pattern m k conditions conditions

274 0.02 No MT 38 8.7 cond rand
274 0.05 No MT 38 8.4–8.7 cond rand
274 0.02 Yes noisy 34 8.5 cond rand
274 0.05 Yes KL 34 8.5 cond rand
200 0.03 No MT 24 7.8 ins squares
170 0.09 No KL 32 7.3 cond rand
170 0.09 Yes KL 32 – cond par+rand
170 0.09 Yes MT/KL 24 7.2 ins rand
170 0.09 No KL 26 7.3 ins rand
170 0.09 Yes MT/KL 24 7.2 ins squares
170 0.09 No KL 26 7.2 ins squares

Table 1. A summary of the various patterns present for the aspect ratio Γ =5, different
rotation rates Ω and ε values. All of the simulations were for a Prandtl number of 6.4. The
Coriolis force is always included, but the centrifugal force is only sometimes included, as noted.
The pattern in the bulk is noted (KL= Küppers–Lortz pattern, MT= modulated trimodal).
In addition, the mode number m of the wall mode was measured and is noted, as is the
wavenumber of the bulk pattern, k. The boundary conditions (‘cond’= conducting and ‘ins’=
insulating) and initial conditions (‘rand’= random, ‘par’ = parallel rolls and ‘squares’ = two sets
of rolls of equal amplitude and orthogonal orientation) are also noted. Note that for rotation
rates of (170, 200, 274) the critical Rayleigh numbers are (18249, 22255, 32932).

though the usual KL pattern rapidly develops, the MT pattern coexists, and persists
for a long time, even when the KL pattern has damped out completely (after t = 300τν).

By taking Fourier transform of the temperature profile at midplane, we can extract
the amplitude of the three dominant, straight, parallel modes A1, A2 and A3. By
looking at the sequence of events, A1 → A2 corresponds to a switch of about π/6
rad, A2 → A3 corresponds to a switch of about π/3 rad, and A3 → A1 corresponds
to a switch of π/2 rad. (A more careful investigation of the switching indicates the
precise angles are 33π/180, 57π/180, π/2, but we have rounded here for simplicity.)
The three modes are plotted as a function of time in figure 3. One can see that the
system switches very cleanly and periodically among the three modes, with a period
of 8.4 τν per cycle which corresponds to an oscillation frequency of 0.75 rad τ−1

ν . The
amplitude of A2 is significantly smaller than that of either A1 or A3, causing this MT
state to superficially resemble squares.

3.2. Comparisons to experiments and other simulations

When we conducted our simulations with the same parameters as Sánchez-Álvarez
et al. (2005), (Γ = 5, Ω =274, σ = 6.4, ε =0.02, and conducting thermal boundary
conditions), we also saw the same type of ‘square-like’ pattern as shown in
figure 4(a) and corresponding angle–time plot in figure 5(a). Although not very
visible in figure 5(a), a very faint third mode is also present, so we will again denote
this as an MT pattern. When we ran this simulation for a much longer time (but
different, random initial conditions) as shown in figure 6, we do see a mixed MT/KL

pattern. We also ran simulations for the same parameters as Sánchez-Álvarez et al.
(2005), but included the centrifugal force as well. A snapshot is shown in figure 4(b)
and the corresponding angle–time plot is shown in figure 5(b). The pattern here
is extremely noisy and disorganized. It appears that the centrifugal force is strong
enough for these rotation rates to disrupt the MT patterns. Note that the Froude
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Figure 1. Angle–time plot for Γ = 5, σ =6.4, ε =0.03, Ω = 200, and insulating thermal
boundary conditions. This is a density plot of the radially averaged Fourier power, F (Θ, t),
as a function of orientation angle Θ and time t . Black corresponds to the largest value and
white to the smallest. Because the angle of the rolls is a director field, only angles from −π/2
to π/2 are shown. Note that −π/2 maps onto π/2. (a) Entire time series shown. (b) Close-up
of the region from 650 to 800 τv . The oscillation frequency is 0.75 rad τ−1

ν .

Figure 2. Snapshot of the temperature deviation θ at the midplane, for the same parameters
as in figure 1. The grey denotes the conduction value (θ =0), and the lighter and darker shades
give the values above and below this. The time is 650 τv .

number is 0.07 here. We were unable to find MT patterns with the centrifugal force
included at a rotation rate of 274.

We did, however, find MT patterns with the centrifugal force included when we
ran the simulations at the lower rotation rate of 170 (and Froude number= 0.03),
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Figure 3. A plot of the amplitude versus time for the same parameters as in figure 1. The
amplitude A1 corresponding to rolls at −π/2 rad at 650 τν is the solid line, the amplitude
A2 corresponding to rolls at −π/3 rad at 650 τν is dash-dotted line and the amplitude A3

corresponding to rolls at 0 rad at 650 τν is dashed. In the second plot, the means of the
respective amplitudes are subtracted Ai − 〈Ai〉 so that the oscillations can be compared. The
means are 0.78, 0.16 and 0.74, respectively.

(a) (b)

Figure 4. Snapshot of the temperature deviation θ at the midplane, for Γ = 5, σ = 6.4, ε = 0.02
and Ω = 274. Lateral temperature boundary conditions are conducting and random initial
conditions were used. (a) Coriolis force only, t = 33 τv . (b) Centrifugal and Coriolis forces are
included, t = 6.22 τv .

corresponding to the parameters used in the experiments by Bajaj et al. (1998). As
seen in figure 7(b), an initial, possibly transient pattern of pure squares was found
when we ran the simulations with the same parameters as the experiments. Eventually,
these square patterns broke up, and a mixed MT/KL pattern developed instead as
can be seen in the angle–time plot in figure 8(b).

We also ran the system in figure 7(b) for a much longer time, but this time with
squares as the initial conditions. A typical snapshot is shown in figure 9 and the
corresponding angle–time plot is shown in figure 10. This time we found the MT
pattern to be intermittent with the KL state. This type of intermittency was also seen
by Bajaj et al. (1998) in the experiments.

When we ran our simulations using only the Coriolis force, we were unable to find
MT patterns for these parameters. A typical plot is shown in figure 7(a), and the
corresponding angle–time plot is shown in figure 8(a).
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Figure 5. Angle–time plot for the same parameters as in figure 4. (a) Coriolis force only,
oscillation frequency of 0.63 rad τ−1

ν . (b) Centrifugal and Coriolis forces are included, with no
discernible oscillation frequency.
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Figure 6. Angle–time plot for the same parameters as in figure 4(a) but for different random
initial conditions. The oscillation frequency is 1.1 rad τ−1

ν .

To summarize, we find MT, KL and mixed MT/KL patterns for a broad range of
parameters, both with and without the inclusion of the centrifugal force. However,
for a side-by-side exact comparison with experiments (for example, Bajaj et al. 1998),
the centrifugal force needs to be included.
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(a) (b)

Figure 7. Snapshot of the temperature deviation θ at the midplane, for Γ = 5, σ = 6.4, ε = 0.09
and Ω = 170. Lateral temperature boundary conditions are insulating and random initial
conditions were used. (a) Coriolis force only, t = 8 τv . (b) Centrifugal and Coriolis forces are
included, t = 11 τv .
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Figure 8. Angle–time plot for the same parameters as in figure 7. (a) Only the Coriolis force
is included. The oscillation frequency is 2.2 rad τ−1

ν . (b) The centrifugal force is also included.
The oscillation frequency (after t = 25 τν) is 3.11 rad τ−1

ν .

3.3. Influence of wall mode on the bulk

To determine if the wall mode influences the MT patterns, we also ran our simulations
with periodic boundaries (2.7) for aspect ratio Γ = 10. As shown in figure 11, we see
that the MT pattern does appear intermittently throughout the simulation, especially
around 200 and then again around 300 vertical diffusion times. This suggests that these
patterns are the result of a bulk pattern solution to (2.1)–(2.3) for rotating Rayleigh–
Bénard convection with the inclusion of the Coriolis force. This is consistent with the
results of Rubio et al. (2010), who found ‘square-like’ patterns very near threshold
in cylindrical cells for Γ = 11.8, σ = 4.5, Ω = 19.7, and with experimentally realistic
boundary conditions. Since the rotation rate is so small for this case, the instability
in the bulk sets in before the wall mode instability. This is further evidence that the
MT patterns are independent of the wall mode and can exist without it.

Marques & Lopez (2008) studied the influence of the wall modes on the bulk
for higher rotation rates (Ω =625), and did find a loose correlation between the
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Figure 9. Snapshot of the temperature deviation θ at the midplane, for the same parameters
as figure 8(b) except that the initial conditions were squares. The time is 74.7 τv .
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Figure 10. Angle–time plot for the same parameters as in figure 9. The oscillation frequency
is 3.14 rad τ−1

ν .

wavenumber of the wall mode and the bulk pattern. They found ‘square’ patterns
for a lower mode number and KL patterns for a higher mode number. We see no
such correlation in our data (see table 1). For Ω = 274, we see MT patterns for a
higher mode number (m =38) than the KL pattern (m = 34) and for Ω = 170 the MT
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Figure 11. Angle–time plot for Γ = 10, σ = 6.4, ε = 0.02 and Ω = 274. Lateral temperature
boundary conditions are periodic and the initial conditions are squares. The oscillation
frequency is 1.0 rad τ−1

ν .

patterns exist for a lower mode number (m = 24) than the KL pattern. However, note
that the different boundary conditions for these two cases may also play a role here.

Our results clearly indicate that the wall mode does not influence the bulk for our
parameters. Our own experience working with the wall mode in an annular geometry
(Scheel et al. 2003) also suggests that the influence of the wall mode is only felt
very near the walls. For annular regions it is useful to define δr = r0 − ri as the
difference between the outer and inner radii. We found that even for δr = 0.5, the
counter-propagating wall modes on the inner and outer radii did not interfere with
each other. This is consistent with Zhan et al. (2009), who found the inner and outer
waves interacted for δr � < 0.375. Zhan et al. (2009) suggested that the wall mode
profoundly influences the bulk, since the dynamics is different for an annular channel
where δr = 2 and Γ = ∞ and a square periodic cell with Γ = 2. However, an infinite
annulus with δr = 2, Γ = ∞ is not equivalent to a periodic cell with Γ =2. There is
a different pattern of mean flow due to the presence of sidewalls in the former case
(Scheel et al. 2003), which may have a stronger influence on the bulk than the wall
mode, especially in larger aspect ratio systems. Also, as seen in Scheel et al. (2003), the
net mean flow in annular cells decreases with increasing aspect ratio and decreasing
ε. In conclusion, very near threshold and at Γ =5, the bulk may be well described by
the amplitude equation, even if a wall mode is present. The good agreement in table 2
suggests that this is indeed the case and the MT solutions to the amplitude equation
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Ω ε ω (num) ω(π/6, π/3, π/2) ω(π/3, π/6, π/2) ω(π/4, π/4, π/2) ω(π/3, π/3, π/3)

170 0.090 2.2 2.4 1.0 1.9 6.5
200 0.027 0.75 0.8 0.25 0.6 2.25
274 0.022 1.0 0.8 0.0 0.55 2.35

Table 2. Oscillation frequency ω (num) in units of rad τ−1
ν for various parameters computed

from the angle–time plots in comparison with the imaginary part of the complex eigenvalues
for the four trimodal states. We used the data from figure 15 and multiplied by the respective ε
values to obtain ω. The numerical values were found from figures 8, 1(a) and 11, respectively.
(We always used cases where only the Coriolis force was included.)

provide an explanation for the ‘square-like’ patterns seen by Bajaj et al. (1998) and
Sánchez-Álvarez et al. (2005).

3.4. Amplitude equation analysis

Following the same method as in Scheel (2007), we perform a multiple-scales analysis
of the Boussinesq equations (2.1)–(2.3) with the Coriolis force for no-slip boundary
conditions. We also neglect mean flow, since we will truncate our analysis at order
ε3/2. As a result, a potential formulation (Scheel 2006) will suffice. We neglect the
centrifugal force since the toroidal–poloidal decomposition (3.1) cannot accommodate
the radial dependence.

Following Küppers & Lortz (1969) and Schlüter et al. (1965), we can decompose
the velocity (u, v, w) into two arbitrary functions: φ, ψ:

u = ∂z∂xφ − ∂yψ,

v = ∂z∂yφ + ∂xψ,

w = −
(
∂2

x + ∂2
y

)
φ,

⎫⎪⎬
⎪⎭

(3.1)

which is analogous to a toroidal–poloidal decomposition but makes the linear operator
(see below) self-adjoint.

After various simplifications (Scheel 2006), (2.1)–(2.3) can be rewritten as

LV = N, (3.2)

where L is the linear part of the Boussinesq equations, N is the nonlinear part, and

V =

⎡
⎣

φ

ψ

θ

⎤
⎦. (3.3)

We will separate out fast (x, z) and slow (X, Y, T ) scales of (3.2) by the following
replacements:

∂x → ∂x + ε1/2∂X, ∂y → ε1/4∂Y , and ∂t → ε∂T , (3.4)

where our control parameter ε is defined as

R = Rc + εRc . . . . (3.5)

We also rewrite V as

V = ε1/2V0 + εV1 + ε3/2V2 + · · · · (3.6)
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The only new part of these calculations is to assume a three-mode solution:

V0 = (A1(X, Y, T )eik1 · x + A2(X, Y, T )eik2 · x + A3(X, Y, T )eik3 · x)V̄(z) + cc, (3.7)

where

V̄(z) =

⎡
⎣

φ̄(z)

ψ̄(z)

θ̄ (z)

⎤
⎦. (3.8)

The bar indicates that the z solutions have been minimized for marginal stability
(see Scheel 2006). The variable k = |k1| = |k2| = |k3| is the critical wavenumber of the
rolls, and A1, A2, A3 are the amplitudes of the three modes, which are a function of
X, Y and T only.

Note that the wave vectors have been chosen so that k1 · k2 = k2 cosΘ1,
k2 · k3 = k2 cos Θ2 and k1 · k3 = k2 cos Θ3, and Θ1 + Θ2 + Θ3 = π, where Θi is the
smallest angle between Ai and Aj (remember that Θ is a director field so π maps
onto 0).

To summarize, at order ε3/2, our multiple scales expansion and solvability condition
lead to three coupled amplitude equations (for simplicity we will assume no spatial
X, Y dependence):

τ0∂T A1 = A1 − g0|A1|2A1 − g12|A2|2A1 − g13|A3|2A1,

τ0∂T A2 = A2 − g0|A2|2A2 − g21|A1|2A2 − g23|A3|2A2,

τ0∂T A3 = A3 − g0|A3|2A3 − g32|A2|2A3 − g31|A1|2A3,

⎫⎬
⎭ (3.9)

where the coefficients τ0, g0 are found as a function of σ and Ω and are the same
for each amplitude (Scheel 2007). The coefficients (g12, g21), (g13, g31) and (g23, g32) are
also functions of σ and Ω as well as Θ1, Θ3 and Θ2, respectively. Note that except
for certain Θi values, gij 	= gji . The lateral boundary conditions are arbitrary at this
point.

In all cases, we can solve for the steady state solutions A1s, A2s, A3s as solutions to
∂T A1 = ∂T A2 = ∂T A3 = 0, respectively. The following solutions exist (Hoyle 2006):

(a) 1-mode (A1s = A1, A2s = A3s = 0),
(b) bimodal (A1s = A1, A2s = A2, A3s = 0),
(c) trimodal (A1s = A1, A2s = A2, A3s = A3).
Note that squares are the special case that A1 = A2, Θ1 = π/2 and g12 = g21. Also,

hexagons are the case that A1 = A2 = A3, Θ1 = Θ2 =Θ3 = π/3, g12 = g31 = g23 and
g21 = g13 = g32.

We have plotted a few values of gij and gji as a function of Ω in figure 12(a). The
quantity g1 refers to the case where i > j , and the angle given is the angle between
the rolls Ai and Aj . So g1 can refer to either g12, g13 or g23. Likewise, g2 refers to the
case where j > i, or rotation in the opposite direction.

If a stationary solution exists, then we can solve for its stability against perturbations
(Cross & Greenside 2009):

A1p = A1 + δA1,

A2p = A2 + δA2,

A3p = A3 + δA3.

⎫⎬
⎭ (3.10)

We now rescale the time T ′ = T/τ0 and amplitudes A′
i =

√
Ai/g0 and rotation

coefficients g′
ij = gij/g0 (and remove the primes).The perturbations are assumed to
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Figure 12. (a) A plot of g1/g0 versus Ω (dash-dotted lines) and g2/g0 versus Ω (solid lines)
for various Θ values (as labelled) and for a Prandtl number of 6.4. (b) A plot of g1/g0 versus
Ω for various Θ values (as labelled). Note that the line gi = g0 is drawn as a dashed line in
both figures.

have the following growth rates:

δA1 = δa1e
σ1T ,

δA2 = δa2e
σ2T ,

δA3 = δa3e
σ3T .

⎫⎪⎬
⎪⎭

(3.11)

We solve for σ1, σ2 and σ3 by substituting (3.11) into (3.9), linearizing in δai and
then solving for the eigenvalues of the matrix equation⎡
⎣

1 − 3A2
1 − g12A

2
2 − g13A

2
3 −2g12A1A2 −2g13A1A3

−2g21A2A1 1 − 3A2
2 − g21A

2
1 − g23A

2
3 −2g23A2A3

−2g31A3A1 −2g32A3A2 1 − 3A2
3 − g31A

2
1 − g32A

2
2

⎤
⎦.

(3.12)
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Figure 13. A plot of A1 (solid line), A2 (dash-dotted), A3 (dashed) versus Ω for the coupled
modes with angles (a) (π/6, π/3, π/2), (b) (π/3, π/6, π/2), (c) (π/4, π/4, π/2), and (d ) (π/3,
π/3, π/3). The amplitudes are plotted only for the cases where the stationary solutions exist.

Again, we can separate out our three cases to gain more insight.
(a) 1-mode: |A1| =1, |A2| = |A3| =0, δA3 = 0, σ1 = −2, σ2 = 1−g12. Straight, parallel

rolls become unstable to rolls at an angle Θ1 when g12 < 1. This is known as the
Küppers–Lortz instability. As can be seen from figure 12(b), this first occurs at
Ω = 23 and Θ1 = π/3, consistent with prior results (Küppers & Lortz 1969). However,
note that the band of unstable rolls widens rapidly as Ω increases. Also, the angle for
the largest growth rate decreases as Ω increases. Note that for Ω = 200 the maximum
growth rate occurs at Θ = 33π/180, exactly one of the switching angles seen in
figure 1(a).

(b) Bimodal: |A1|2 = (1 − g12)/(1 − g12g21),|A2|2 = (1 − g21)/(1 − g12g21), |A3| =0. The
bimodal state ceases to exist exactly at the Θ1, Ω values for which the Küppers–
Lortz instability sets in (g12 < 1). For Ω values less than this, the bimodal state is
always unstable to the asymmetric state (one set of rolls growing and the other
decaying). Also note that squares (Θ1 = π/2) always exist but are always unstable
towards the asymmetric state. This positive growth rate for squares becoming
unstable to the asymmetric state is plotted as a solid line in figure 14 as a function
of Ω .

(c) Trimodal. In this case we solve for the eigenvalues of (3.12) for various possible
combinations of Θ1, Θ2 and Θ3 concurrently with the stationary solution to (3.9). We
plot the stationary amplitudes (where they exist) in figure 13 and the real part of the
growth rates in figure 14 for a few selected cases. Finally, we plot the imaginary part
of the growth rates in figure 15.

The single and bimodal mode analysis agrees with the Küppers–Lortz results as
expected. However, for the trimodal cases, there are Hopf bifurcations to modulated
trimodal amplitude states, including the heteroclinic cycle (Θ1 = π/3, Θ2 = π/3,



Rotating Rayleigh–Bénard convection at high rotation rates 39

0 100 200 300 400 500
0.05

0.10

0.15

0.20

Ω

σi

Figure 14. A plot of the real part of the positive growth rates σi versus Ω for coupled modes:
the solid line denotes two coupled amplitudes (|A1| = |A2|, θ1 = π/2), growth rate associated with
one mode growing and the other decaying. All the rest are for three coupled amplitudes, and the
growth rate is complex and associated with an oscillatory mode: dashed line= (π/6, π/3, π/2)
and (π/3, π/6, π/2), dotted line= (π/4, π/4, π/2), and dash-dotted line= (π/3, π/3, π/3).
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Figure 15. A plot of the imaginary part of the growth rates ω/τ0 versus Ω for the three
coupled oscillatory modes: dashed line= (π/6, π/3, π/2), solid line= (π/3, π/6, π/2), dotted
line= (π/4, π/4, π/2) and dash-dotted line= (π/3, π/3, π/3). (Note that we divide by τ0 to go
from unscaled to scaled units).

Θ3 = π/3) as previously analysed (Goldstein et al. 1992). We have focused on the
heteroclinic case as well as three other cases, (π/6, π/3, π/2), (π/3, π/6, π/2) and
(π/4, π/4, π/2). For high enough rotation rates, these three trimodal cases all exhibit
a limit-cycle behaviour that is similar to the heteroclinic cycle, except that the
amplitudes are unequal. We will focus on the (π/6, π/3, π/2) case since it appears
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often in our simulations for our parameters, but the other ones have a similar
behaviour. Since the mode amplitudes are unequal, and the amplitude for the π/6 roll
set is much smaller than the other two, this trimodal oscillatory state can superficially
resemble squares. Comparing figure 3 with figure 13(a) strongly suggests that this is
the pattern seen at these rotation rates and near threshold. Note, however, that the
agreement in amplitude could be better. Theoretically, we predict amplitudes of (0.81,
0.52, 0.12). Numerically, we find amplitudes of (0.78, 0.74, 0.16). Evidence supporting
the MT state can also be seen by comparing the growth rates. The smallest positive
growth rate in figure 14 is for (π/6, π/3, π/2) at Ω = 200, and the largest growth
rate from rolls to tilted rolls in figure 12(b) is at about π/6 (33π/180 to be precise).
Also, our oscillation frequency of rolls agrees best with the imaginary part of the
growth rates for (π/6, π/3, π/2) for all three rotation rates as seen in table 2. Note,
however, that the oscillation frequency for Ω = 170 is for a KL pattern and not an
MT pattern. But, in general, the MT patterns have slightly higher frequencies than
the KL frequencies, so this still supports the data.

4. Conclusion
In conclusion, for intermediate rotation rates and Prandtl numbers in rotating

Rayleigh–Bénard convection, we find the existence of stable limit cycles consisting
of three coupled oscillating amplitudes, both numerically and theoretically. Since
one of the three amplitudes can be significantly smaller than the other two, these
MT solutions can superficially resemble square patterns. Since square patterns are
unstable in this parameter regime, these MT patterns provide a good explanation of
the ‘square-like’ patterns seen in experiments and other simulations.

These MT solutions coexist with the KL solutions, hence it can be very difficult to
end up with a pure MT solution. Sometimes the MT solutions are intermittent with
KL states. This is particularly true when we start with random initial conditions. By
starting with squares as the initial condition, we are more likely to see the MT pattern
dominating.

Since many MT solutions exist for these parameters for a range of angles, as do a
large band of KL states, it may be puzzling to understand why the (π/6, π/3, π/2)
MT state is selected in figure 1(a). However, for these parameters, the set of rolls with
the largest growth rate is near π/6, so perhaps it is not so surprising that this roll
angle is included in the MT state selected. In addition, the real part of the growth rate
for the (π/6, π/3, π/2) MT state is the smallest at Ω = 200. Interestingly, the MT state
seen in the Ω =200 case from figure 1(a) is incredibly stable. Multiple noisy restarts
could not jostle it into a KL state. However, other cases, even simply starting from
different initial conditions for Ω = 200, led instead to mixed or intermittent MT/KL
states. This is consistent with the results seen by Bajaj et al. (1998).

In addition, we find both numerically and theoretically that the MT patterns
are independent of the inclusion of the centrifugal force, at least at low enough ε.
However, to make an exact comparison with experiments, the centrifugal force needs
to be included. As noted earlier, our Froude numbers are 0.03 and 0.07, which is in
a regime where Marques et al. (2007) found quantitative and qualitative changes in
the flow dynamics. Our results are in agreement with this claim.

Finally, we find no correlation between the wall mode and the bulk and conclude
that these MT patterns are the result of a bulk instability for rotating Rayleigh–
Bénard convection for this parameter regime.
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The physical existence of trimodal patterns in rotating Rayleigh–Bénard convection
may extend to other systems displaying similar symmetry. Also, more theoretical work
should be done to better understand the stability and robustness of these patterns.
For example, four-mode (or higher) amplitude equation solutions could also exist.
We simply focused on three-mode solutions since those were most common for our
parameters.
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